Case Study: Winnapaug Pond, Westerly, RI

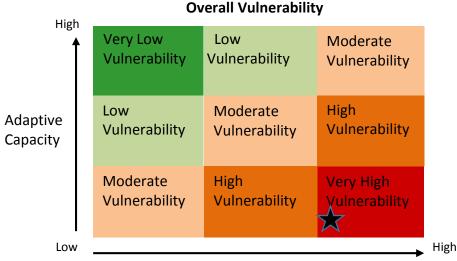
Habitat Description

Winnapaug Pond is a coastal salt pond subject to diurnal tidal fluctuation with tidal exchange occurring via a permanent breachway. The large (approximately 104 acre) salt marsh system at the southeast corner of the pond contains both high marsh zones (dominated by *Spartina patens*), and low marsh zones (dominated by *Spartina alterniflora*). Ditching and subsequent spoils from this activity form levees throughout the marsh that are responsible for significant degradation.

The overall condition of tidal salt marsh within the State of Rhode Island is considered poor (as evidenced by the frequent and wide-spread formation of anoxic pools deteriorating high marsh) with an overall high degree of threat (rank=3). Threats to the unique vegetation communities (e.g. low salt marsh, high salt marsh, salt panne, salt scrub) that comprise this habitat include: habitat shifting and alteration, invasive non-native /alien species, household sewage and urban waste water, housing and urban areas, and recreational activities (RI DEM 2015).

Assessment Period

The team considered an array of time frames for this assessment and opted for an end period of 2050. They felt this would give an appropriate long-term view for making current and near-term management decisions and current models predicting the expected change in environmental conditions were available for this end date. The assumed change in environmental condition for the assessment period included an increase in temperature and precipitation, with a general shift toward greater winter precipitation and more frequent extreme precipitation events (*see* Supplemental Material), as well as a two foot increase in sea level.


Site Stressors and Characteristics Summary

- Most extreme case of 'waffle' marsh in the state (grid ditching with levees)
- Very wet, a lot of open water/pannes
- Very muted tidal range (elevation of marsh is just a little higher than pond)
- Road to south
- Largely in private ownership although some protection by land trusts
- Potential nutrient input from residential areas and golf courses
- Little high marsh present
- Permanent outlet via breachway

Final Scores: Exposure-sensitivity = 64.7 Adaptive Capacity = 5.0 Certainty = 2.2

Scoring Summary

HIGH exposure-sensitivity, LOW adaptive capacity, VERY HIGH overall vulnerability.

Exposure-Sensitivity

The assessed salt marsh at the southeast corner of Winnapaug Pond is surrounded by medium and medium-high density residential development whose presence, in addition to the golf course situated directly on the pond, influence nutrient input via groundwater and surface water flow. This marsh has a muted tidal range with a low elevation relative to the pond surface elevation. The current severely degraded state of this marsh and extremely reduced sediment supply as the result of extensive ditching and buildout on the dune barrier (e.g. Route 1A and residential development) are the primary contributing factors that support a high exposure-sensitivity score.

The low adaptive capacity score reflects this site's lack of protected status and extreme fragmentation of habitat. Marsh migration potential is also limited by surrounding elevation and infrastructure and would require significant effort (e.g. grading; displacement of roads and residential areas) to provide suitable opportunity for the marsh to move. In addition, the low score reflects the general lack of economic incentive and potential management actions possible beyond recent efforts that have been undertaken to restore the marsh.

The overall vulnerability score is based on the relationship table above in which a high score for exposuresensitivity and low score for adaptive capacity situate this site in the very high vulnerability bin. This very high overall vulnerability score suggests that this site will be very sensitive to the anticipated change in climate and lacks sufficient adaptive capacity components which might help mitigate expected changes in environmental condition. Given the already degraded condition at this site, Winnapaug Pond salt marsh will likely experience further extreme degradation and/or extensive loss of habitat.

Assigned Scores

The assessment team collaborated to create and review a list of reference materials which they incorporated into a resource document designed to capture relevant information from assorted data sets, white papers and published journal articles. To simplify the scoring process, this resource document was then converted into a bulleted list of anticipated species and/or habitat responses to the anticipated change in condition. The notes provided below reflect both general discussion content from the bulleted list which, together with the original resource document and the CCVATCH Guidance document as necessary were used as the primary source of considerations when discussing score assignment (at left) as well as more specific discussion points and considerations related to this site, if applicable (at right). Inserted grey boxes reflect the outcome of early team discussions regarding specific site characteristics that would influence score assignment; if none exist, then scores were assigned consistently for all sites.

Direct Climate Effects		
 Current Condition: Range shifts, altered species composition ↓ forb communities ↓ high marsh ↑ die-back Declines in salt marsh extent since 1860s; loss rate over 40 years = 17.3% Loss through: shoreline erosion, reduced bay head region (back-barrier lagoons & estuaries), widening & headward expansion of tidal channels (+ formation/expansion of interior ponds) 	 Already very impacted from SLR In rough shape Greatest non- climate stressor = ditching 	
Sites vary based on: presence/absence or extent of die-back areas; ratio of high/low marsh (or percent of transitional marsh communities); and/or extent of vegetation loss	Assigned Score: 9 Certainty: 2.5	
 Increase in CO₂: No expected change to C4 plants but ↑ biomass in C3 plants (<i>Scirpus, Phrag</i>) Root %N ↓ and C/N ↑ in <i>Scirpus</i> could decrease decomposition and increase peat formation	Assigned Score: 0 Certainty: 4	
Increase in Temperature: • Δ competitive interactions • Δ competitive interactions Note: Although it was agreed that vegetation community composition (specifically the presence/absence and extent of forb panne communities) could be reflected in a differential response between sites, the variation in marsh communities across the state is very modest and would likely not support different scoring.	 Potential to warm up faster? (because it is a lagoonal system) 	
Individual site response does not vary: Score = 2; Certainty = 3	Assigned Score: 2 Certainty: 3	

Change in Precipitation:	Freshwater
• Seasonal Δ timing/duration influences salinity through salt H ₂ O intrusion	input to basin
Changes in groundwater flow/level can impact marsh elevation	from red maple swamp (in
• Δ precipitation = \downarrow productivity	natural area to
C4 better competitors with frequent/more severe drought	NW)
• \downarrow precipitation and drought have no significant impact on <i>S. patens</i>	Stormwater
 Dieback 个 during drought? 	from Rt 1A (Shore Rd)
Sites vary based on: relative groundwater levels (potentially, although site specific data is not available); species composition (maybe)	Assigned Score: 2 Certainty: 1.5
Change in Sea Level:	May persist
Effects species distribution (shift to more salt tolerant species)	through 1 foot
• \downarrow high marsh	(from SLAMM)
• \downarrow low sediment marshes	
• ↑ inundation reduces below-ground biomass of <i>S. alterniflora</i>	
 	
Sites vary based on: change in tidal range (using relative elevation as proxy)	Assigned Score: 9.5 Certainty: 3.5
Change in Extreme Climate Events:	Road and
 	residential area
 Δ upland/marsh interface 	to south provides some
• ↑ compression of marsh surface due to weight of storm surges	protection
 Δ plant communities 	
• 个 debris	
Sites vary based on: differences in geomorphology (e.g. presence/absence of dunes, orientation relative to dominant wind direction, degree of fetch); proximity to rivers prone to flooding; adjacent land use	Assigned Score: 1 Certainty: 2

Invasive / Nuisance Species		
 Current Condition: Many exotic grazers and predators are present and increasing (interactions with natives vary ±) 	 Low Phragmites (because of high salinity) 	
 Many anthropogenic impacts making things worse (e.g. eutrophication, overfishing, shoreline development) 	 Too wet for crabs 	
 Range expansion by native plants, animals occurring (impacts debated ±) 		

	Sites vary based on: presence/absence/proximity of Phragmites; presence/ abundance of crab herbivores (if/when data available); presence/absence/ proximity of others (e.g. perennial pepperweed, purple loosestrife)	,	Assigned Score: 0. Certainty: 2.
ncroa	se in CO ₂ :		
•	↑ could enhance fitness of many marsh invasives (e.g. <i>Phragmites</i>) as well as some natives (e.g. poison ivy)		
•	Phragmites does better with salt stress with \uparrow CO2 and \uparrow temperature		
•	Reduction in %N of <i>Scirpus</i> shoots results in an increase in green tissue C/N (may effect herbivore preferences and feeding rates); not true of C4 grasses (<i>S. patens, D. spicata</i>)		
	Note: Response of <i>Phragmites</i> to both elevated CO ₂ and temperature should only be considered once (do not double-count impact under both stressors		
h	ndividual site response varies only by presence/absence/proximity of invasives: If absent – Score = 0; Certainty = 1		Assigned Score: Certainty: 2
ncrea	se in Temperature:		
•	\uparrow temperature and CO ₂ may make <i>Phragmites</i> more tolerant of salt stress	•	Potential for
•	C4 plants more resistant to <i>Phragmites</i> encroachment		drying out
•	\uparrow temperature may encourage range expansion of southern species (animals <u>quicker</u> , plants)	•	(summer) Some Phragmites
•	Impacts of both natural and facilitated expansion debated		encroachment
•	Facilitates Phragmites encroachment (with elevated CO ₂)		(maybe crabs)
1	ndividual site response varies only by presence/absence/proximity of invasives: If absent – Score = 0; Certainty = 1		Assigned Score:
hang	e in Precipitation:	•	Certainty: 2
hang •	e in Precipitation: May cause species, currently limited by seasonal flooding, to spread	•	
hang •	•	•	Certainty: 2
hang • •	May cause species, currently limited by seasonal flooding, to spread	•	Certainty: 2
•	May cause species, currently limited by seasonal flooding, to spread Plants and animals vulnerable to flooding may experience negative impacts	•	Certainty: 2 <see above=""> Assigned Score:</see>
•	May cause species, currently limited by seasonal flooding, to spread Plants and animals vulnerable to flooding may experience negative impacts Multiple stressors (abiotic + biotic) may act synergistically with \uparrow precipitation Individual site response varies only by presence/absence/proximity of invasives: If absent – Score = 0; Certainty = 1	•	Certainty: 2 <see above=""> Assigned Score:</see>
•	May cause species, currently limited by seasonal flooding, to spread Plants and animals vulnerable to flooding may experience negative impacts Multiple stressors (abiotic + biotic) may act synergistically with ↑ precipitation Individual site response varies only by presence/absence/proximity of invasives:		Certainty: 2 <see above=""> Assigned Score: Certainty: 2 May benefit but very little</see>
•	May cause species, currently limited by seasonal flooding, to spread Plants and animals vulnerable to flooding may experience negative impacts Multiple stressors (abiotic + biotic) may act synergistically with ↑ precipitation Individual site response varies only by presence/absence/proximity of invasives: If absent – Score = 0; Certainty = 1 e in Sea Level:		Certainty: 2 <see above=""> Assigned Score: Certainty: 2 May benefit but very little Phragmites</see>
•	May cause species, currently limited by seasonal flooding, to spread Plants and animals vulnerable to flooding may experience negative impacts Multiple stressors (abiotic + biotic) may act synergistically with ↑ precipitation Individual site response varies only by presence/absence/proximity of invasives: If absent – Score = 0; Certainty = 1 e in Sea Level: Rising SL may accelerate loss of some natives (e.g. salt sensitive species)		Certainty: 2 <see above=""> Assigned Score: Certainty: 2 May benefit but very little <i>Phragmites</i> anyway</see>
hang	May cause species, currently limited by seasonal flooding, to spread Plants and animals vulnerable to flooding may experience negative impacts Multiple stressors (abiotic + biotic) may act synergistically with ↑ precipitation Individual site response varies only by presence/absence/proximity of invasives: If absent – Score = 0; Certainty = 1 e in Sea Level: Rising SL may accelerate loss of some natives (e.g. salt sensitive species) Salt sensitive species may move inland if possible	•	Certainty: 2 <see above=""> Assigned Score: Certainty: 2 May benefit but very little Phragmites</see>

Note: Although site specific responses may in fact vary, the relative cost/ benefit associated with invasive/nuisance species (e.g. reduced <i>Phragmites</i> , increased crabs) is simply too complex without additional information with which to make that determination.	
Individual site response varies only by presence/absence/proximity of invasives: If absent – Score = 0; Certainty = 1	Assigned Score: -0.5 Certainty: 2.5
 crease in Extreme Climate Events: Variable impacts on species, disease, vectors, etc. 	
 Range expansion likely More disturbances could 个 vulnerability to invasion 	
Individual site response varies only by presence/absence/proximity of invasives: If absent – Score = 0; Certainty = 1	Assigned Score: 0 Certainty: 2.5

Nutrients	
 Current Condition: High nutrient levels cause ↑ aboveground and ↓ belowground biomass; accelerates organic matter decomposition; marsh geomorphic stability is lost ↑ N bad for high marsh - ↑ N favors <i>S. alterniflora</i> and <i>Phragmites</i> at expense of <i>S. patens</i> ↑ N may allow marshes to accrete faster than sea level rise N loading may reduce soil accretion in highly organic marshes (by ↓ allocation to roots); species composition shift to species that produce less below ground biomass 	 Residential contrib. to N loading: was seasonal, now year-round, so should be limited nutrients in future High N possible (observed wastewater seepage) Fertilizer and Canada goose excrement from golf course Largely undeveloped to NW No specific data (influences
Sites vary based on: nutrient input source/levels (use adjacent land use as proxy / estimator); vegetation composition; relative position in Bay (upper vs lower); other nutrient sources	certainty) Assigned Score: 3.5 Certainty: 2
Increase in CO ₂ : • Changes to vegetation communities (e.g. <i>Phragmites</i> promotion) affects N pools	

Climate Change Vulnerability Assessment Tool for Coastal Habitats

 Changes to structure 	/function of microhial N transformary	
-	e/function of microbial N transformers	
	ground prod. with $N + CO_2$ (but not each alone)	
 个 C4 growth under l increasing CO2 	high N (above- and below-ground) but response \downarrow with	
	Individual site response does not vary:	Assigned Coores
	Score = 0; Certainty = 0.5	Assigned Score: Certainty: 0.
· · · · · · · · · · · · · · · · · · ·		
ncrease in Temperature:	ound for <i>S. alterniflora</i> , but not high marsh plants	
-	oth low + high marsh with warming	
Warming ↑ decomp		
• \uparrow temperature = \uparrow	nutrient cycling	
	Individual site response does not vary:	
	Score = 0; Certainty = 2	Assigned Score:
		Certainty:
 hange in Precipitation: Drought decreased d 	lecomposition for native high marsh	If drier summers (and
-	mass for S. alterniflora and S. patens	assume N is
-		bad)
-	rels could influence nutrient availability/circulation	
• 个 in wet deposition	of nutrients	
Sites vary based on: pot	tential for nutrient input via surface and groundwater	Assigned Score:
(using adjacent land use	e [and slope] as proxy])	Certainty: 1.
hange in Sea Level:		If residential or
-	may keep up with sea level rise	sewer /
	imate, nutrients, predation) impact marshes abilities to	improved septi
survive SLR		as anticipated
-	may degrade marshes by cooperatively contributing to \uparrow ncentration (\uparrow decomposition)	
Note: Reference do	cuments are not as definitive as the first and third bullets	
	hat influence growth rate may influence ability to survive	
	y alter community composition and increase turf building	
	eedback associated with increased decomposition (and	
	s) may result in greater drowning potential.	
Sites vary based on: frequ	uency/duration of inundation (with elevation as proxy) if	
	n adjacent land use, relative position in Bay) are thought	Assigned Score: 3.
to influence site		Certainty: 2.
ncrease in Extreme Climat	te Events:	No major
	quent combined sewer overflows	impact
,		

 Note: General knowledge also suggests storm related flooding and run-off as source. Sites vary based on: expected influence and proximity of overflow locations (e.g. upper vs. lower Bay); other sources (using adjacent land use as proxy); slope; 	
geomorphology	Assigned Score: 3 Certainty: 2.5
Sedimentation	
 Current Condition: Salt marshes in RI are not keeping pace with SLR; low suspended sediment in Narragansett Bay ↑ ditching in marshes = ↓ sedimentation Height and width of barrier is related to sedimentation rate in back barrier system ↓ sediment supply may exacerbate marsh loss but unlikely sole driver With ↑ sediment of 1-2 orders of magnitude, marsh can form in < 100 years 	 Surface flow through red maple swamp / sub-division Extreme ditching (↓ sediment supply) Already sediment starved (original from dune, now restricted); barrier overwash impeded by development)
Sites vary based on: extent of ditching; river/streams inputs (or presence/ absence of river/streams as estimator); presence/absence of dunes	Assigned Score: 7.8 Certainty: 3.3
Increase in CO₂: • Sediment trapping ↑ in C3 plants with ↑ N and ↑ CO₂ Individual site response does not vary: Score = 0; Certainty = 2	Assigned Score: 0 Certainty: 2
Increase in Temperature: No impact of increase on sediment supply anticipated. All sites = no score.	Assigned Score: - Certainty: -
Change in Precipitation: • ↑ precipitation may increase sediment supply from uplands/streams Sites vary based on: adjacent land use; presence/absence of streams	 Surface flow, no change likely Assigned Score: 0 Certainty: 3.3
Change in Sea Level:	Assumed limited

Climate Change Vulnerability Assessment Tool for Coastal Habitats

Accretion rates across Narragansett Bay are not keeping pace with SLR	accretion at this
 个 inundation period may increase sediment deposition 	site
 In vegetated marshes with high sediment loads, marshes may sustain elevation with SLR 	
 Narragansett Bay marshes rely primarily on <u>organic</u> accretion – ratios are site- specific 	
Non-tidally restricted marshes may <u>not</u> drown	
Note: Although the degree of tidal restriction and sediment load may influence sites, it is not possible to predict relative response to these factors.	
Individual site response does not vary: Score = -1; Certainty = 1.5	Assigned Score: 3 Certainty: 1.8
Increase in Extreme Climate Events:	Reduced
 Summer storms a major factor in defining short-term variability in sedimentation rates 	overwash potential due
 Storm events dominate accretion/sedimentation rates at certain marshes. Mostly <u>riverine systems</u> and those subject to storm overwash 	to houses / road
Sites vary based on: expected influence and proximity of overflow locations (e.g. upper vs. lower Bay); other sources (using adjacent land use as proxy); slope;	Assigned Score: 0 Certainty: 2.5

Erosion	
Current Condition: Look up annual erosion rates from CRMC for each marsh (http://crmr.ri.gov/maps/) 	 No real evidence at hand
 Edge vegetation has been denuded by overabundant marsh crabs Vegetation loss leads to widening of creek banks and loss of marsh edge/area Soil type and geographical setting are most important factors when comparing erosion rates among sites Erosion continuously occurs (no critical threshold below which there is none) Sites vary based on: erosion rates (using shoreline change maps as proxy for current rates); evidence of creek widening; soil type; geomorphic setting 	 Back barrier system Assigned Score: 1.5 Certainty: 1.5
 Increase in CO₂: ↑ soil surface cover from ↑ plant production can reduce erosion rates Note: Although the decomposition of peat (and potential for increased erosion) could also be exacerbated by CO₂, levels of CO₂ across the state are assumed to be basically a constant and therefore no site specific variation in score for this impact is possible either. 	

	Individual site response does not vary: Score = 3.9; Certainty = 3	Assigned Score: 0 Certainty: 3
Increase	e in Temperature:	
•	\uparrow temperature = \uparrow belowground decomposition = \uparrow erosion (maybe)	
	Individual site response does not vary: Score = 3.9; Certainty = 3	Assigned Score: 3.9 Certainty: 3
-	in Precipitation: With increased rainfall, there may be an increase in erosion at riverine salt marsh systems	
	Note: Acknowledging that variation between sites is possible, this metric presents a challenge as differences in stream flow rate, channel width/depth etc. are generally not known.	
	Sites vary based on: proximity of rivers/streams influencing scouring levels	Assigned Score: 1 Certainty: 2
Change	in Sea Level:	
•	As marshes drown, wind-driven waves will erode unvegetated platforms	
•	Platform marshes are more susceptible than ramp (fringe) marshes because they are expected to drown at once	
•	\uparrow SL of 30 cm will \uparrow potential erosion on marsh surface by 50% (considered by authors as not significant)	
•	Shoreline erosion with \uparrow wind wave exposure (associated with \uparrow depth, fetch, bottom shear stress)	
	Sites vary based on: type (e.g. platform, fringe); orientation to dominant wind direction; relative elevation; measured erosion rates (e.g. from shoreline change maps); percent vegetated cover	Assigned Score: 1 Certainty: 2
Increase	e in Extreme Climate Events:	
•	\uparrow storms = more erosion of barrier beaches = \uparrow threat to back barrier marshes	
•	Violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates	
	Note: Given the somewhat contradictory statements of the two bullets, the choice was made to consider only the second for scoring purposes.	
	Individual site response does not vary: Score = 1.7; Certainty = 2	Assigned Score: 1.4 Certainty: 2

Environmental Contaminants	
Current Condition:	No local sources

	d tolerance to historic and persistent levels of exposure; y be reduced ability to tolerate climatic stress						
	Certain legacy pollutants are decreasing, but other emerging contaminants are increasing and it is unknown how these 'new' contaminants will affect marsh growth						
 CC will stress communication c	nunities through shifting them into non-optimal areas, \downarrow ity, \uparrow stress						
	Sites vary based on: proximity and source of exposure to both legacy and emerging contaminants; adjacent land use						
Increase in CO ₂ :							
—	y ecosystem processes by altering contaminant mobility						
	ufficient information to determine the degree to which lity is affected by CO2 (and the degree to which						
-	ke will alter ecosystem processes). No variation in score winformation becomes available.						
	Individual site response does not vary:	Assigned Score: 0					
	Score = 0; Certainty = 1	Certainty: 1					
Increase in Temperature							
•	minant uptake and stress plant/animal community						
 May see 个 use of p 	pesticides / persistent organic pollutants (POPs) with \uparrow						
	mperature may alter uptake and physiological response						
 个may favor hardie blooms (HABs) 	r species (more toxic species) that cause harmful algal						
no data available to	nperature is assumed to have some effect, there is o determine if a 2° change is a sufficient trigger. No ossible unless new information becomes available.						
	Individual site response does not vary: Score = 0; Certainty = 1	Assigned Score: 0 Certainty: 1					
Change in Precipitation:							
•	\uparrow runoff = \uparrow contaminants delivered to marshes						
 	N wet deposition						
Sites vary based o	n: presence/absence of contaminants; slope; presence	Assigned Score: 0					
	and amount of stormwater and stream inputs; adjacent land use						
Change in Sea Level:							
-	e/land cover will alter runoff / flooding and delivery of						
Changes bioavailab	ility based on changes in salinity						

Sea level affects infrastructure which alters contaminant delivery if infrastructure fails or is flooded	
Sites vary based on: presence/absence of contaminants; contaminant delivery as function of flooding associated with SLR [potentially using elevation as proxy]	Assigned Score: 0 Certainty: 2.5
 Increase in Extreme Climate Events: Can cause ↑ flooding of infrastructure / landfills, ↑ contaminant delivery 	
Sites vary based on: presence/absence of contaminants; contaminant delivery as function of coastal flooding potential	Assigned Score: 0 Certainty: 2.5

Degree of Fragmentation	
 Many species (particularly plants) decrease with fragmentation Fragmentation exacerbates vulnerability as harder to move and ↓ genetic diversity Many mutualisms hindered by fragmentation 	Fragmentation is extreme
Edge effects	Assigned Score: 0 Certainty: 3.5
Barriers to Migration	, , , , , , , , , , , , , , , , , , ,
 ↑ permeability = ↑ adaptability (through migration/range shift) Relatively flat topography may result in ↑ shifts if barriers are at a greater distance (or absent) Steep natural topography, but may still allow fringe marsh if erodable Hardened, developed shoreline, more of an impediment # and size of structures may ↑ in response to SLR 	 Extreme on entire edge (road / houses to south); migration to west but only if residential area removed Dense development/ infrastructre Assigned Score: 0 Certainty: 3
Recovery / Regeneration	
 Speed of recovery / regeneration depends on severity of disturbance Must be careful with restoration targets (i.e. is it likely that historic targets not going to be possible in future) Where tidal exchange occurs through narrow inlets, tidal range restricted (and converse is true); may influence response 	Assigned Score: 1 Certainty: 2
Diversity of Functional Groups	
 Dependent on disturbance level / stress Biogeographical shifts of community already occurring and will continue 	

Changes to growing season will affect which species/groups are active when	Assigned Score: 0 Certainty: 3.5
Management Actions	
 Current marsh extent is a relic of historic land-use change; allow return to 'natural state' 	 Use dredge spoil? Runneling to drain? Re-distribute levee materials Very little economic incentive for thin layer deposition
	Assigned Score: 2 Certainty: 3
Institutional / Human Response	
 Decide if assisted migration is valid Varied (depends on current/future management agency) 	 Not protected throughout (some land trusts) State may take responsibility
	Assigned Score: 2 Certainty: 2.5

Research Needs

Certainty scores reflect the source of information considered when assigning sensitivity-exposure and adaptive capacity scores and ranges from zero (0; no direct or anecdotal evidence) to four (4; strong evidence, high consensus). Across all assessed sites within the state, overall certainty tended to be moderately higher at individual sites where local data sources were available or active management was being planned or applied.

Certainty score assignment associated with specific stressors (or stressor interactions) that are assigned an average score of less than two across sites indicates a general lack of evidence or consensus regarding habitat response. In the table below, circles indicate stressor / stressor interactions that fall within that category. Closed circles (\bullet) indicate specific instances in which Winnapaug Pond also received low scores for those stressors and open circles (\circ) indicate higher than average certainty scores since more information about this specific site is known. X's indicate instances where the available information related to Winnapaug Pond was considered lacking and therefore were assigned less than the average certainty score. Cells in the table marked with \bullet or X's generally suggest that more research is needed to better understand habitat response at Winnapaug Pond.

	Current Condition	CO ₂	Temp.	Precip.	Sea Level	Extreme Climate
Direct Effects				Х		0
Invasive /Nuisance Sp.						
Nutrients		•		•	0	0
Sedimentation					Х	
Erosion	X					
Env. Contaminants	0	•	•	0	0	0
	Habitat Fragment.	Barriers	Recovery /Regen.	Functional Groups	Management Actions	Inst./Human Response
Adaptive Capacity						

Process and Facilitation

Numerous meetings were conducted over the course of a year to implement CCVATCH in the State of RI. The assessment team members varied somewhat, but a core group representing numerous state agencies (e.g. RI Coastal Resources Management Council, US Environmental Protection Agency, US Fish and Wildlife Service, Narragansett Bay National Estuarine Research Reserve, Audubon Society of RI, and Save The Bay) have consistently participated throughout the process. The process of applying CCVATCH in RI required the following general steps:

- Overview of tool & habitat selection
- Identification of experts, resources (e.g. published literature, available data sets, etc.) available
- Outreach to experts to solicit additional resource material
- Review of reference material & generation of resource document
- Create bulleted list from resource document to assist with scoring
- CCVATCH score assignment of selected sites

Team members were originally invited from a master list of attendees at a salt marsh conference recently held in the state. While this may have biased habitat selection toward salt marsh, specifically those marshes for which monitoring data were available, other habitats were identified as priorities for assessment such as tidal river/stream and submerged aquatic vegetation (SAV) for future efforts. Additional applications of CCVATCH to these habitats may take place in future, particularly if on-going efforts in other New England states develop resource documents that would aid in the process (*see* http://graham.umich.edu/activity/32984 for a project overview).

Climate Forecast

Temperatures in the Northeast increased by almost 2°F between 1895 and 2011 (0.16°F per decade) and precipitation increased more than 10%, approximately 5 inches (0.4 inches per decade; Horton et al,

2014). For the State of Rhode Island, a change in annual mean temperature of +3.6°F is expected by 2050 with comparable increases in annual precipitation levels, predominantly in the winter months (RCP8.5 scenario; Alder and Hostetler, 2013). Increased winter precipitation would mean more water available for runoff and evaporation. Rising temperatures would melt snow faster and earlier, likely increasing runoff and soil moisture in winter and early spring followed by reductions in soil moisture in the late summer and early fall, since warmer temperatures drive higher evaporation rates. The Northeast has experienced a greater recent increase in extreme precipitation than any other region in the United States, more than 70% increase in the amount of precipitation falling in very heavy events (defined as the heaviest 1% of all daily events) between 1958 and 2010 (Horton et al, 2014). Long-term rates of sea-level rise are 2.74 mm year-1 from 1930 to 2013 at the Newport, RI tide station; rates calculated from more current data over a shorter time scale suggest 4 mm year-1 increase in mean high water (MHW) from 1993 to 2014 (Boyd & Freedman, 2015). A two foot increase in sea level for 2050 and five foot increase by 2100 predicted using the NOAA High Rate sea level rise curve for this area has been adopted by the state to govern policy and management.

	Curren	ıt	Predic	cted	Current	Predicted	Change in	Change in
	(1950-	2005)	2025-2049		(1950-2005)	2025-2049	Evap. Deficit	Runoff 2025-
	Temp	(°C)	∆ Temp		Precip	Δ Precip	2025-2049	2049
			(°C)		(mm/day)	(mm/day)	(mm/mo)	(mm/mo)
	min	max	min	max				
Winter	-5.1	4.5	2.2	1.8	3.3	0.4	0.0	22.7
Spring	8.0	19.0	1.8	1.8	3.0	0.2	0.7	-12.6
Summer	14.7	25.3	2.1	2.2	3.0	0.2	7.1	-2.9
Fall	1.0	10.9	2.3	2.1	3.5	0.1	0.1	-0.5
Annual	4.6	14.9	2.1	2.0	3.2	0.3	2.0	1.7

*Data from USGS National Climate Change Viewer (RCP8.5 scenario; Mean Model output available Jan. 2016)

References

Alder, J. R. and S. W. Hostetler, 2013. USGS National Climate Change Viewer. US Geological Survey http://www.usgs.gov/climate_landuse/clu_rd/nccv.asp doi:10.5066/F7W9575T

Boyd, J. and J. Freedman, 2015. The Rhode Island Sea Level Affecting Marshes Model (SLAMM) Project: Summary Report. RI CRMC. Available: http://www.crmc.ri.gov/maps/maps_slamm/20150331_RISLAMM_Summary.pdf

Horton, R., G. Yohe, W. Easterling, R. Kates, M. Ruth, E. Sussman, A. Whelchel, D. Wolfe, and F. Lipschultz, 2014: Ch. 16: Northeast. Climate Change Impacts in the Unites States: The Third National Climate Assessment. J.M. Melillo, T. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 16-1-nn.

Rhode Island Department of Environmental Management (RI DEM), 2015. Wildlife Action Plan. Available: <u>http://www.dem.ri.gov/programs/fish-wildlife/wildlifehuntered/swap15.php</u>